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Abstract 

This paper presents one of the simplest 

method to tune decentralised PI (PID) 

controllers for two-input and two-output 

(TITO) processes. The TITO process was 

decoupled through a decoupler matrix. To 

handle loop interactions a model reduction 

method with suitable FOPDT and SOPDT  

model  for each element of the resulting 

diagonal process through fitting the nyquist 

plots at particular points.  Simulation 

examples of MIMO systems are given to 

demonstrate the effectiveness and accuracy 

of the proposed algorithm. Compared to 

other tuning methods it has less number of 

tuning parameters and more over uses only 

less number of controllers, therefore it is one 

of the cost effective method to control the 

process. 
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1.Introduction 

The PID controller is the most popular 

controller used in process control, because of 

its remarkable effectiveness and simplicity of 

implementation. Although significant 

developments have been made in advanced 

control theory, according to the literature, 

more than 95% of industrial controllers are 

still PID, mostly PI controllers. PI (PID)  

control is sufficient for a large number 

of control processes, particularly when 

dominant process dynamics are of first 

(second) order and there design requirements 

are not too rigorous. Although this controller 

has only three parameters, it is not easy to 

find their optimal values without a systematic 

procedure. As a result PI (PID) tuning methods 

are extremely desirable due to their wide 

spread use. 

   Generally, most industrial processes are 

multi variable systems. When interactions in 

different channels of the process are modest, 

a diagonal PID controller is often adequate. 

Two-input two-output (TITO) systems are one 

of the most prevalent categories of multi 

variable systems. So an approach for square 

systems is to use a decoupler plus a 

decentralized PID controller. One great 

advantage of this method is that it allows the 

use of single-input single-output (SISO) 
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controller design methods. One of the 

simplest methods to tune decentralised PI 

(PID) controllers for TITO process is proposed 

in this paper. 

The TITO process was decoupled through 

a decoupler matrix that allows for more 

flexibility in choosing the transfer functions 

of the decoupled apparent process. A model 

reduction method with suitable FOPDT and 

SOPDT model for each element of the 

resulting diagonal process through fitting the 

nyquist plots at particular points is 

implemented to handle loop interactions. 

Simulation examples OF MIMO systems are 

incorporated to validate the usefulness of 

the presented algorithm. Compared to other 

tuning methods it has less number of tuning 

parameters and more over uses only less 

number of controllers, therefore it is one of 

the cost effective method to control the 

process 

.Many PI or PIDcontrollers have been 

proposed (Chien and Fruehauf1990; Tyreus 

and Luyben, 1992). 

Juan et.al.,(2012)  proposed a generalized 

formulation of simplified decoupling to n × n 

processes  that allows for different 

configurations depending on the decoupler 

elements set to unity. 

Zhuo et.al., (2011) proposed  the design of a 

multi-loop PI controller to achieve the desired 

gain and phase margins for two-input and 

two-output (TITO) processes . 

 An extension of the inverted decoupling 

approach that allows for more flexibility in 

choosing the transfer functions of the 

decoupled apparent process  (Juan 

et.al.,2011). 

The idea of an effective open-loop transfer 

function (EOTF) is first introduced to 

decompose a multi-loop control system into a 

set of equivalent independent single loops.( 

Truong et.al., 2010) 

 

Branislav and Miroslav (2010) designed 

multivariable controller  based on ideal 

decoupler D(s) and PID controller optimization 

under constraints on the robustness and 

sensitivity to measurement noise 

Nordfeldta and Haddlund(2006) proposed 

controller consists of a decoupler and a 

diagonal PID controller. 

Control Engineering Practice, Volume 14, Issue 

9, September 2006, Pages 1069-1080 

Saeed Tavakoli, Ian Griffin, Peter J. Fleming 

,  

Tavakoli et.al(2006) presented a decentralised 

PI (PID) tuning method for two-input two-

output processes  based on dimensional 

analysis 

  

 Wang et.al.,(2006) considered auto-tuning of 

simple lead-lag decoupler plus decentralized 
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PI/PID controllers for effective control of two-

input and two-output (TITO) processes. 

  

 Maghade and Patre (2012)   proposed a 

decentralized PI/PID controller design method 

based on gain and phase margin specifications 

for two-input–two-output (TITO) interactive 

processes   

Automatica, Volume 31, Issue 7, July 

1995, Pages 1001-1010 

Z.J. Palmor, Y. Halevi, N. Krasney 

Palmor et.al., (1995)   present an algorithm for 

automatic tuning of decentralized PID control 

for two-input two-output (TITO) plants that 

fully extends the single-loop relay auto-tuner 

to the multiloop case.  

Rajapandiyan and  Chidambaram(2012)  

proposed the closed-loop identification of 

two-input–two-output (TITO)  second-order 

plus time delay (SOPTD) transfer function 

models of multivariable systems is presented 

based on optimization method using the 

combined step-up and step-down responses. 

2. Structure of PI controller design 

Most of the industrial process have 

multivariable control variable that are 

common properties for the models of 

industrial processes to have significant 

uncertainties, strong interaction and non-

minimum phase behaviour so it is important 

for control engineer, chemical engineer to 

understand the non-idealities of industrial 

processes. The structure of MIMO control 

system is shown in figure1. 

 

  

 

Fig1. (2×2) Multivariable Model Structure 

Here  from fig 1,G11(s) is a symbol used to 

represent the forward path dynamics 

between mv1 and cv1, while G22(s) describes 

how cv2 responds after a change in mv2. The 

interaction effects are modelled using transfer 

functions G21(s) and G12(s). G21(s) describes 

how cv2 changes with respect to a change in 

mv1 while G21(s) describes how cv1 changes 

with respect to a change in mv2. 

 2.1 Interaction 

Interaction is undesirable in a MIMO 

system. This is true for setpoint 

disturbances.While changing setpoint of one 

loop the other loop should not be affected 

and if the loop do not interact, each individual 

loop can be tuned by itself and the whole 

system should be stable if each individual loop 

is stable. Unfortunately, due to this 

interactions design of an effective control 

system for multivariable process is difficult.  
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When interactions are significant the multi 

loop PID design most often fails to give 

acceptable responses. In other words, 

adjusting control parameters of one loop 

affects the performance of another, 

sometimes to the extent of destabilising the 

entire system. So one approach for square 

system is to use a decoupler plus a 

decentralised PID controller. 

One great advantage of this method is that it 

allows the use of single-input single-

output(SISO) controller design methods. 

2.2 Decentralised controller 

Decentralized PID controller is one of 

the most common control scheme for 

interacting multi-input multi-output (MIMO) 

plants in chemical and processing industries. 

The main reason for this is its relatively simple 

structure, which is to understand and to 

implement. With decentralized techniques, 

from figure.2, a multivariable system inputs 

and output variables is treated as n 

monovariable systems. The number of tuning 

parameters is 3n where n is the number of 

inputs and outputs. While in full matrix PID 

control there are 3n2 parameters.  In case of 

actuator or sensor failure, it is relatively easy 

to stabilize manually because only one loop is 

directly affected by the failure. Despite its 

simple structure, decentralized PID control 

has long record of satisfactory performance. 

 

Fig 2.Decentralized control of MIMO process 

2.3 Decoupler design 

The design of decoupled control system with 

decoupler matrix can be done combining a 

diagonal controller Kd(s) with a block 

compensator D(s). With this configuration the 

controller see the process as a set of n 

completely independent process or with 

interaction minimized. 

The objective in decoupling is to compensate 

for the effect of interactions brought about by 

cross coupling of the process variables. 

  

 

Figure 4. General 2×2 system with decouplers 

and single-loop controllers 

Let the TITO process be 
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It supposed that off-diagonal elements of G(s) 

have no RHP poles. Another assumption is 

that diagonal elements of G(s) are no RHP 

zeros 

From fig 4, 

1 12 2

21 1 2

( ) ( ) ( )
( )

( ) ( ) ( )
v s d s v s

D s
d s v s v s
 
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= 
<

= −

= −

(6) 

 

 

d11(s)=1 and d22(s)=1 

Q(s)= G(s)D(s) = diag{ q1(s),q2(s) }       (7) 

Q(s) is to be controlled through a 

decentralised PI(PID) controller. In other 

words, q1(s) and q2(s), which are two SISO 

plants, are controlled through k1(s) and k2(s) 

respectively, where as each  leading diagonal 

element of decentralised control matrix is a 

PI(PID) controller.It is worth noting that 

interactions are zero unless additional large 

poles are added to the decoupler to make it 

proper . 

 

3.0 Model reduction 

  In this section a first (second) order 

plus dead time model is determined for each 

decoupled process. This approximation is 

done to determine the tuning parameter 

values from the optimum tunung formula 

3.1 FOPDT Approximation Model 

Approximation of higher order 

processes by lower order process plus dead 

time model is a common practice. Although a 

FOPDT model does not capture all the 

features of higher order process, it often 

reasonably describes the process gain, overall 

time constant and effective dead time of such 

a process.  

In order to find a approximate FOPDT model 

for h(s), three unknown parameters namely 

kp, τd and T should be determined. 

The first order system equation is given as 

( )
1

d s
pk e

l s
Ts

τ−

=
+

(8) 
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(0)pk h=
{9)

 
The steady state gain and gain margin are 

same for higher order process and FOPDT 

model are same.  

Hence, 

{ } { }

(0) (0)
( ) ( )

( ) ( )
c c

c c

l h
l j h j

l j h j

ω ω

ω ω

=

=

∠ = ∠
 

Where the cross over frequency, ωc, of the 

original system is determined using  

( )ch jω π∠ =  

As a result, the parameters of FOPDT model 

can be calculated. 

(0)pk h=  

By equating h (jωc) and the values of l(jωc)  

can be given as; 

( )
( )

( )
( )

2

2

1

(0)

1

p
c

c

c

c

k
h j

T

hh j
T

ω
ω

ω
ω

=
+

=
+

 

( ) ( )

( ) ( )

( )

2

2

2

2

(0) 1

(0) 1

(0) 1

c
c

c
c

c

c

hT
h j

hT
h j

h
h j

T

ω
ω

ω
ω

ω

ω

 
= −  
 

 
= −  

 

 
−  

 =
                       (10)

 

Hence this equation gives the time constant. 

For finding τd , 

We are equating phase of h(jωc), 

( ) ( )1tand c c cT h jτ ω ω ω−− − = ∠  

Where 

( )
( )

( )
( )

( )

1

1

1

1

tan

tan

tan

tan

c

d c c

d c c

d c c

c
d

c

h j

T

T

T

T

ω π

τ ω ω π

τ ω π ω

τ ω π ω

π ω
τ

ω

−

−

−

−

∠ = −

− − = −

− = − +

= −

−
=

                               (11)

 

3.2 SOPDT Approximation Model: 

Although a large number of industrial 

processes can be fairly accurately modelled 

using FOPDT transfer function, if a process has 

an oscillatory step response, FOPDT model 

cannot model the process well. In this case a 

more accurate model of the process can be 

obtained using SOPDT model in  
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2

2 2( ) ,0 1
2

d s
p n

n n

k e
l s

s s

τω
ξ

ξω ω

−

= < ≤
+ +



 

  (12)
 

Therefore four unknown parameters should 

be determined they are kp,τd,ωnandξ. To 

determine the four unknowns four real 

equations are needed and can be constructed 

by fitting the process gain h(s) at to nonzero 

frequency points.  

( ) ( )

( ) ( )
b b

c c

l j h j

l j h j

ω ω

ω ω

=

=



  

In this method, we pick two points s= jωc and 

s= jωb, 

where  

( )

( )
2b

c

h j

h j

πω

ω π

∠ = −

∠ = −
 

Where ωb is determined by equating h(jωb) 

and ( )bl jω


 

( ) ( ) ( )( )

( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( )

2

2 2

2

2 2

2

2 2

cos sin
2

cos sin
2

cos sin
2

p n b d b d
b

b n b n

p n b d b d
b

n b n b

p n b d b d
b

n b n b

k j
h j

j

k j
j h j

j

k j
h j

j

ω ω τ ω τ
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ω ξω ω ω

ω ω τ ω τ
ω

ω ω ξω ω

ω ω τ ω τ
ω
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−
=

− + +

−
− =

− +

−
=

− − −

 

By equating the real part 

( ) ( )

( ) ( )

2 cos
2

cos 2

p n b d
b

n b

p n b d b b

k
h j

k h j

ω ω τ
ω

ξω ω

ω ω τ ξω ω

=

=

 

 

   (13)

 

By equating the imaginary part 

 

( ) ( )
( )

( ) ( ) ( )

2

2 2

2 2 2

sin

sin

p n b d
b

n b

p n b d n b b

k
h j

k h j

ω ω τ
ω

ω ω

ω ω τ ω ω ω

−
=

− −

= −

   (14)

 

Where ωc is determined using 

( ) ( ) ( )( )
( ) ( )

1 0c c

c c

h j h j j

h j h j

ω ω

ω ω

= − −

= −

  (15)

 

Now by equating  

( ) ( )c ch j and l jω ω


 

 

 

 

 

 

( ) ( ) ( )( )2

2 2

cos sin
2

p n c d c d
c

c n c n

k j
h j

j
ω ω τ ω τ

ω
ω ξω ω ω

−
=

− + +

( ) ( ) ( )( )
( )

2

2 2

cos sin
2

p n b d b d
b

n b n b

k j
h j

j
ω ω τ ω τ

ω
ω ω ξω ω

−
=
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By equating the real part  

( ) ( )( )
( )

( )( ) ( ) ( )

2

2 2

2 2 2

cos

cos

p n c d
c

n c

p n c d n c c

k
h j

k h j

ω ω τ
ω

ω ω

ω ω τ ω ω ω

=
− −

= − −

     (16)

 

By equating the imaginary part 

( ) ( )( )

( )( ) ( )

2 sin
2

sin 2

p n c d
c

n c

p n c d c c

k
h j

j

k j h j

ω ω τ
ω

ξω ω

ω ω τ ξω ω

−
=

−

=

     (17)

 

Thus by equating (13) and (17) 

( )
( )

( )
( )

( )
( )

( )
( )

2cos
sin 2

cos
sin

b bp n b d

p n c d c c

b bb d

c d c c

h jk
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ω ωω τ
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By merging Eq. (14) and (16) 
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2 22
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− 19 

Eq. (19) gives the value of ωn ,then kp and ξ 

are determinedfromtheEq(13)and(14) 

respectively.
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2
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4.0 OPTIMAL TUNING FORMULA 

4.1 Optimal PI controller for FOPDT process 

In order to propose a set of PI tuning formulae 

for FOPDT model, the PI parameters should 

be defined based on model parameters, 

( )
( )

1

2

, , ,

, , .

c p d

i p d

k f k T

T f k T

τ

τ

=

=
 

Functions f1 and f2 should be determined so 

that a set of performance criteria is optimised. 

The optimisation problem may also be include 

some constrains. Clearly it is very difficult to 

determine these functions because each 

parameter of the control is a function of three 

parameter of the model. To simplify the 

procedure of determining these functions, 

non-dimensional tuning(NDT) method for 

tuning PI controllers for FOPDT process is 

used. The objective function was to minimize 

the integral of absolute error(IAE) for a step 

change in the setpoint. Since the load 

disturbanceresponses may be poor if the ratio 

of the time delay to time constant is too 

small, say less than one-ninth, the integral 

time should be modified for such processes 

which are referred to as lag dominant 

processes. In addition, robustness is a key 

issue in control systems. Gain and phase 

margins are often used aas measures of 

robustness. Considering GM≥3 and PM≥60 as 

the robustness constrains. Optimal PI tuning 

formulae resulting from the NDT method 

capable of coping with FOPDT lag dominant 

and integrating processes. 

The tuning formulae is given by 

1
2 14c p

d

Tk k
τ

= +

(20) 

 

1min 1 ,9 .
7

i d dT
T T T

τ τ = + 
 

(21)                     

 

4.2 Optimal PID Controller for SOPDT Process 

Considering a step change in the setpoint, the 

NDT formulae for a SOPDT process minimising 

the IAE and satisfying the GM and PM 

constraints are shown,  

,c
p d n

k
k
ξ
τ ω

=
 

2 ,i
n

T ξ
ω

=
1 .

2d
n

T
ξω

=

(22)

 

It is well known that despite good robustness 

and good setpoint responses, load 

disturbance responses may be poor if the 

cancelled poles are shown in comparison with 

dominant poles. 
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5.0 SIMULATION RESULTS 

Three simulation examples are now 

considered to demonstrate the closed-loop 

performances of decentralized PID designed 

with the proposed method. 

5.1 EXAMPLE 1 

 The wood-berry binary distillation column 

plant is a multivariable system with strong 

interaction and significant time delays, it is 

described by the following process transfer 

matrix: 

 ( )

3

1 7 3

12.8 18.9
16.7 1 21.0 1
6.6 19.4

10.9 1 14.4 1

s s

s s

e e
s sG s
e e
s s

− −

− −

 −
 + + =
 −
 + + 

 

( )
( )

1

2

1

1

v s

v s

=

=
 

From Eq.(6)
 

( )

( ) ( )

3

12

2

12

18.9
21.0 1
12.8
16.7 1

1.477 16.7 1
21 1

s

s

s

e
sd s
e
s

s e
d s

s

−

−

−

−
+= −

+
+

=
+

 

( )

( ) ( )

7

21 3

4

21

6.6
10.9 1
19.4

14.4 1
0.34 14.4 1

10.9 1

s

s

s

e
sd s
e

s
s e

d s
s

−

−

−

+= −
−

+
+

=
+

 

By substituting all values in Eq.(5) 

The decoupler matrix is given as 

( )

( )

( )

2

4

1.477 16.7 1
1

21 1
0.34 14.4 1

1
10.9 1

s

s

s e
sD s

s e
s

−

−

 +
 

+ =
 +
 

+ 
 

The resulting diagonal system is  

 ( ) ( ) ( ){ }1 2, ,Q s diag q s q s=  

( ) ( ) ( )1q s G s D s=
 

( ) ( )
( )( )

( ) ( )
( )( )

7

1

93

2

6.43 14.4 112.8
16.7 1 10.9 1 21.0 1

9.745 16.7 119.4
14.4 1 10. 1 21.0 1

ss

ss

s eeq s
s s s

s eeq s
s s s

−−

−−

+
= −

+ + +

+−
= +

+ + +
 

In order to determine a PI controller using the 

NDT formulae, q1(s) andq2(s) should be 

expressed as FOPDT processes. It is 

determined by finding ωc  from the nyquist 

plot of the original system. 
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Fig 6. Nyquist plot of the original system(example 1) 

From the fig 6, 

( )
1.58

0.740
c

ch j

ω

ω

=

= −
 

( )0 6.37h =  

By substituting all values in Eq.(9),(10) and(11) 

6.37pk =  

26.37 1
74.099 10.740 5.411

1.58 1.58
T

  −  −− = = =

 

( ) ( )1 1tan 5.411 1.58 tan 1.454
1.58 1.58

1.065

d

d

π π
τ

τ

− −− × −
= =

=
 

By substituting all the parameters in the Eq.(8) 

( )
1.065

1
6.37
5.411 1

sel s
s

−

=
+  

Similarly from the Nyquist plot of q2(s),the 

values are given by, 

 

 

9.655, 4.684, 2.157p dk T τ= − = =

  

Therefore by substituting the parameters in 

Eq.(8) 

( )
2.157

2
9.655
4.684 1

sel s
s

−−
=

+
 

From fig 7 & 8 shows the nyquist plots of 

original system and FOPDT models process. 

                       
Fig 7. Nyquist plots of q1(s) and l1(s) 

 

Fig 8.Nyquist plots of q2(s) and l2(s) 

 

Optimal PI controller for FOPDT process: 
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By substituting values in Eq.(20), 

1

1 5.411 1
6.37 2 1.065 14ck  = × + × 

 

( )
1

1 2.54037 0.0714
6.37ck = × +  

( )
1

1 2.6117
6.37ck = ×  

1
0.41ck =  

by substituting all values in Eq.(21) 

1

1 1.065 1.0655.411 min 1 ,9
7 5.411 5.411iT  = × + × 

 
 

( )
1

5.411 min 1.028,1.771iT = ×  

1
5.411 1.028iT = ×  

1
5.56iT =  

1

10.41
5.56ik = ×  

1
0.074ik =  

Simillarly, 

2

2

0.12

0.024
c

i

k

T

= −

= −
 

The NDT controller is given as  

0.0740.41 0

0.0240 0.12
NDT

sK

s

 + 
=  
 − − 
   

The output  response is given as 

Fig 9.Response of example 1(WOOD-BERRY 

distillation column) 

 

The BLT and MV method does not use any 

decoupling strategy. NDT and wang method 

use the same decouplers but, the advantage is 

that NDT use only four tuning parameters 

whereas wang method uses six tuning 

parameters. 

 

 

 

5.2 EXAMPLE 2 

Process control is an essential part of 

desalination industry that requires for 

operation at the optimum operating 
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conditions, an increase in life time of the plant 

and reduction of unit product cost.  

The Alatiqi subsystem transfer matrix is given 

as              

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

7.5 2

2 2

2 2.8 1.15

0.51 1.68
32 1 2 1 28 1 2 1

1.25 4.78
43.6 1 9 1 48 1 5 1

s s

s s

e e
s s s s

G s
e e

s s s s

− −

− −

 − −
 

+ + + + =  − 
 + + + + 

 

From Eq.(5) 

The decoupler is given as 

( )

( )
( )

( )( )
( )( )

2

2

1.65
5.5

3.294 32 1
1

28 1

0.262 48 1 5 1
43.6 1 9 1

s
s

s
s

D s
s s e

e
s s

−
−

 +
 

+ 
=  

+ + 
 + + 

 

 

Where, 

( )
( )

1

5.5
2

1
s

v s

v s e−

=

=
 

( ) ( ) ( )

( ) ( )

2

2

12 7.5

2

1.68
28 1 2 1

0.51
32 1 2 1

s

s

e
s s

d s
e

s s

−

−

−
+ +

= −
−
+ +

 

( ) ( )
( )

2 5.5

12 2

3.294 32 1
28 1

s e
d s

s
+

=
+  

( ) ( )( )

( )( )

( ) ( )( )
( )( )

2.8

21 1.15

1.65

21

1.25
43.6 1 9 1

4.78
48 1 5 1

0.262 48 1 5 1
43.6 1 9 1

s

s

s

e
s s

d s
e

s s

s s e
d s

s s

−

−

−

−
+ +

= −

+ +

+ +
=

+ +

 

 

The diagonal system is given as    

 ( ) ( ) ( )2q s G s D s=  

The diagonal elements of Q(s) are as follows 

( )
( ) ( )

( )( )
( ) ( )( )( )

3.657.5

1 2 2

0.439 48 1 5 10.51
32 1 2 1 28 1 43.6 1 9 1 2 1

ss s s eeq s
s s s s s s

−− + +−
= +

+ + + + + +

( ) ( )( )
( )

( ) ( )( )

2 2.86.65

2 2

4.118 32 14.78
48 1 5 1 28 1 43.6 1 9 1

ss s eeq s
s s s s s

−− +
= +

+ + + + +
 

In order to determine a PI controller using the 

NDT formulae, q1(s) andq2(s) should be 

expressed as FOPDT processes. It is 

determined by finding ωc  from the nyquist 

plot of the original system. 

 

Fig 10.Nyquist plot of the original 

system.(example 2)
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From the fig 10, 

 0.26cω =  

( ) 0.0045ch jω = −  

 ( )0 0.071h = −  

By substituting values in Eq.(9), (10) 

and (11), 

0.071pk = −  

58.761T =  

77.24dτ =  

By substituting these values in Eq.(9) 

( )
77.24

1
0.071
58.761 1

sel s
s

−−
=

+
 

Similarly
 

( )
61.981

2
0.662
32.133 1

sel s
s

−

=
+  

Fig 11 & 12 shows the Nyquist plots of original 

system and FOPDT model of the process  

 

Fig 11.Nyquist plots of q1(s) and l1(s) 

 

Fig 12.Nyquist plots of q2(s) and l2(s) 

 

Optimal PI controller for FOPDT process: 

By substituting values in Eq.(20),        

1

1 58.76 1
0.071 2 77.24 14ck  = × + − ×   

( )
1

1 0.3803 0.0714
0.071ck = × +
−  

( )
1

1 0.45180
0.071ck = ×
−  

1
6.393ck = −  
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By substituting values in Eq.(21), 

1

1 77.24 77.2458.76 min 1 ,9
7 58.76 58.76iT  = × + × 

   

( )
1

5.411 min 1.1877,11.83iT = ×  

1
5.411 1.1877iT = ×  

1
6.427iT =  

1

16.393
6.427ik = − ×  

1
0.092ik = −  

Similarly, 

2
0.499ck =  

2
0.012iT =  

The NDT controller is given as 

 

0.0926.393 0

0.0120 0.499
NDT

sK

s

 − + 
=  
 + 
   

The response is given as 

 fig 13 

Fig 13.Response of example 2(Alatiqi subsystem)

 

 

 

5.3 EXAMPLE 3 

Let the process be: 

( )
( ) ( ) ( )( )

( )( ) ( )( ) ( )

2 2 2

3

2 2

0.5 1
0.1 1 0.2 1 0.1 1 0.2 1

1 2.4
0.1 1 0.2 1 0.1 1 0.2 1 0.5 1

s
s s s s

G s

s s s s s

− 
 + + + + =  
  + + + + + 

 

Due to large interactions in this process, the 

performance of the decentralised PID 

controller based on the critical point is not 

satisfactory and so is not considered for 

comparison 

 Using Eq.(5), the decoupler is given by: 

( )
( )

( )

1 2 0.1 1
5 0.5 1 1

12

s
D s

s

 + 
 = − + 
 

 

Where: 

( )
( )

1

2

1

1

v s

v s

=

=
 

 

( ) ( ) ( )

( ) ( ) ( )

( )
2

21

2

1

50.1 1 0.2 1
0.5 1

2.4 12
0.1 1 0.2 1 0.5 1

s s
d s s

s s s

−+ +
= − = +

+ + +
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Using additional poles with small time 

constants, a practical decoupler is given by: 

( ) ( )

0.1 11 2
0.01 1

0.5 15 1
12 0.05 1

s
sD s

s
s

∧

+ 
 + =

+− 
 + 

 

The diagonal elements of 

( ) ( ) ( )Q s G s D s
∧

=
 

Are given as 

( )
( )( )

( )

( )
( ) ( )( )

1 2

2 2

5 0.5 11 0.5 12
0.1 1 0.05 10.1 1 0.2 1

1 2.4 2
0.1 1 0.5 1 0.01 10.2 1

s
q s

s ss s

q s
s s ss

 + 
= + + ++ +  

 
 

= +  + + ++    

 

In order to determine a PI controller using the 

NDT formulae, q1(s) andq2(s) should be 

expressed as FOPDT processes. It is 

determined by finding ωc  from the nyquist 

plot of the original system. 

 

Fig 14.Nyquist plot of the original system.(example 3) 

From the Fig 14, 

19.89cω =
 

( ) 0.0777ch jω = −
 

( )0 0.917h =
 

By substituting values in Eq(9) (10) 

and (11)  

0.0777pk = −
 

0.591T =
 

0.083dτ =
 

By substituting all values in Eq.(8) 

The FOPDT model for q1(s) is given by: 

( )
0.083

1
0.917
0.591 1

sel s
s

−

=
+

 

Similarly 

 The FOPDT model for q2(s) is given by: 

( )
0.252

2
4.4
3.003 1

sel s
s

−

=
+

 

SOPDT model reduction: 

Since FOPDT model cannot model the process 

well. In this case, a more accurate model of 

the process can be obtained using the SOPDT 

model. 

( ) ( ) ( )

( ) ( )

( )
2

12

2 2

1
0.1 1 0.2 1

2 0.1 10.5
0.1 1 0.2 1

s s
d s ss

s s

−
+ +

= − = +

+ +
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It is given as 

2

2 2( ) , 0 1
2

d s
p n

n n

k e
l s

s s

τω
ξ

ξ ω ω

−

= < ≤
+ +



 

5.572bω = and 19.89cω =  

( )
( )

0.510155

19.89
b

c

h j

h j

ω

ω

=

=
 

By substituting values in Eq.(18) 

( )
( )

cos 5.572 5.572 0.510155
sin 19.89 19.89 0.0777

d

d

τ
τ
× ×

=
× ×

 

( )

( )

0.510155cos 5.572
19.89

cos 5.572 0.0256

d

d

τ

τ

× =

× =
 

and ( ) 0.0777sin 19.89
5.572dτ× =  

( )sin 19.89 0.139dτ× =  

0.029dτ =  

From Eq.(19), substituting the values 

( )
( )

2 2

2 2

sin 5.572 0.029 0.07775.572
19.89 cos 19.89 0.029 0.510155

n

n

ω
ω

× ×−
= −

− × ×
 

2

2

31.047 0.002820 0.0777
395.6121 0.999 0.510155

n

n

ω
ω

− ×
= −

− ×
 

( )( )2 231.047 395.6121 0.0004299n nω ω− = − −
 

2 41.229nω =  

Then kp and ξare determined from Eqs.(14) 

and (13), respectively 

( ) ( )41.29 cos 19.89 0.029 41.229 31.047 0.077pk × × × = − ×
 

0.7925pk =  

( )0.7925 41.229 cos 5.572 0.029 2 0.510155ξ× × × = × ×
 

0.88374ξ =  

Thus by substituting all four unknown values 

in Eq.(12) 

( )
0.029

1 2

32.674
11.349 41.229

sel s
s s

−

=
+ +



 

Similarly SOPDT model for q2 is 

( )
0.008

2 2

46.601
7.838 9.443

sel s
s s

−

=
+ +



 

Fig 15.The Nyquist plots of q1(s) and its appxoximation 

models(example 3) 
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Fig 16.The Nyquist plots of q2(s) and its approximation 

models (example 3) 

 

OPTIMAL TUNING: 

Optimal PI controller for FOPDT process 

1

0.917 0.591 1
2 0.083 14ck ×

= +
×

 

1
3.946ck =  

and

( )( )
1

0.591 min 1.02006,1.2695 0.591 1.02006iT = × = ×
 

1
0.6028iT =  

1

13.946
0.6028ik = ×  

1
6.551ik =  

Similarly,  

2
1.368ck =  

2
0.451ik =  

The NDT-PI controller is given by 

6.5513.946 0

0.4510 1.368
NDT PI

sK

s

−

 + 
=  
 + 
 

 

The response of it is given as 

 

 

 

              Fig 17. Response of example 3(with PI controller) 

 

Optimal PID controller for SOPDT process: 

By substituting all values in Eq.(22) 

1

0.88374
0.7925 0.029 6.42098ck =

× ×
 

1

0.88374
0.14757ck =  

1
6.088ck =  

1

2 0.88374
6.42098iT ×

=  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014                                                             362 
ISSN 2229-5518 
 

IJSER © 2014 
http://www.ijser.org 

1
0.275266iT =  

1

16.088
0.275266ik = ×  

2
22.11ik =  

1

1
2 0.88374 6.42098dT =
× ×

 

1

1
11.34895dT =  

1
0.088113dT =  

1
6.088 0.088113dk = ×  

1
0.536dk =  

 

The NDT-PID controller is given by 

22.1136.088 0.536 0

12.6860 10.529 1.344
NDT PID

s
sK

s
s

−

 + + 
=  
 + + 
 

The response is given as 

Fig 18. Response of example 3(with PID controller)

  Due to adding poles with small time 

constants to off-diagonal elements of the 

decoupler, the NDT controllers have non-zero 

interactions. Clearly the NDT-PID controllers 

gives the best response interms of set point 

regulation and load  disturbance rejection.  

 

 

6. CONCLUTION 

This method is one of the simplest 

method to tune decentralised  PI(PID) 

controllers for TITO process. The  TITO process 

was decoupled through a decoupler matrix. A 

model reduction method was done to find the 

suitable FOPDT(SOPDT)  model  for each 

element of the resulting diagonal process 

through fitting the nyquist plots at particular 

points. The performance of the NDT 

technique was investigated through examples. 

Compared to other methods it has less 

number of tuning parameters and more over 

uses only less number of controllers, 

therefore it is one of the cost effective 

method to control the process 
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